L ocal Disaster Recovery Using Virtualization Technology

Aye Myat Myat Paing
University of Computer Studies, Yangon
paing.ayemyat@gmail.com

Abstract consistency and efficiency are not guaranteed. Most
virtual machines maintain memory and external
Business applications running on [T storage states in separate ways, which may result i
infrastructure necessitate high levels of availapiin ~ an inconsistency when replicated to the backup. host
order to minimize the amount of downtime In the mean time, fast and transparent failure
experienced during any p|anned and unp|annedrecovery requires the baCkUp to be SynChronizeU wit
outages. As a result, disaster recovery has gainedhe primary virtual machine; however, synchronizing
great significance in IT. Exploiting virtualizaticend ~ On every change brings too much performance
ability to automatically reinstall a host, whereeth tradeoffs [9].
action on a virtual machine is performed only wiaen In this paper, we present a continual
disaster occurs. Virtualization affords significasust ~ Migration mechanism for virtual machine based fault
and performance advantages over more traditionaltolerant systems by continually and transparently
disaster recovery options such as tape backup omropagating virtual machine’s states to a backug ho
imaging. Our approach is to design and implement avia live migration [3] techniques. While other
continual migration strategy for virtual machines t Migration based high available systems [9] maistain
achieve automatic failure recovery. By continually @ secondary disk image file on the backup host,
and transparently propagating virtual machine'ststa continual migration propagates disk states via
to a backup host via live migration techniquesyiadi network attached storage, which is more common in
applications encapsulated in the virtual machine ca 2 data center configuration and provides bettditygi
be recovered from hardware failures with minimal in both configuration and deployment. Some research
downtime while no modifications are required. Work achieves failure recovery by taking and restar
Moreover, our framework intends to monitor virtual from checkpoints [7], [4], [8]. Continual migration
machines for problems such as CPU utilization, /0 @ms to provide transparent fault tolerance for
activity, and memory utilization. This raises a commodity applications in data centers or virtual
difficult problem, since it is quite difficult to Ccomputing environments [5].In addition, our
discriminate based on these measures between Hamework make use of out-of-band monitoring
virtual object that is performing properly, and one System using machine learning and virtualization.

that is quite ill. We apply the out-of-band monigr ~ Traditional appro_aches use in-band monitoring
using virtualization and machine |earning can agents. However in-band agents suffer from several

accurately identify faults in the guest OS, while drawbacks: they need to be written or customized fo
avoiding the many pitfalls associated with in-band every workload (operating system and possibly also
monitoring application), they comprise potential security
liabilities, and are themselves affected by adverse
conditions in the monitored systems. Therefores thi
paper describes one approach to out-of-band
monitoring that performs this discrimination based
statistical analysis, as implemented using machine
learning.

Keywords: virtualization, availability,
fault-tolerance, machine leagni

1. Introduction

Virtualization has been widely adopted by
data centers for transparent load balancing,
application mobility, server consolidation and sesu
computing [1]. With one physical machine hosting
many virtual machines, a single node failure may
result in more severe disruption to hosted seryices
which brings great challenge for automatic failure
recovery in virtualized computing environments. One
of the most general solutions for failure recovierio
replicate the states of the protected virtual maehd
a backup host, with which thértual machine may
be recovered from host failures. Although virtual
machine replication can be done in various wags, it

2. Related Work

Remus provides an extremely high degree
of fault tolerance, to the point that a runningtsys
can transparently continue execution on an alternat
physical host in the face of failure with only sede
of downtime, while completely preserving host state
such as active network connections. This system
encapsulates protected software in a virtual machin
asynchronously propagates changed state to a backup
host at frequencies as high as forty times a second
and uses speculative execution to concurrently run



the active VM slightly ahead of the replicated eyst Master  (ytomory Site 1| | Memory State 2 | .. |

state [2]. Host | AN

Ta-Shma [8] uses a continuous data Write Write
protection (CDP) enabled file system to preserve Network /| © e g I.DiskStateZI '
virtual machine disk image files. In a CDP enabled Storage ALt
file system, every write operation is logged and , Live Migrate 'Li\-'eM]'g]'ate
revertible, which enables the virtual machine toreno Slave N 1" ..Memory State 2
to any historical states for debugging, intrusion Host 1 1 JRY S

detection or fault tolerance. Though historicaladist
valuable for system analysis, it is not quite sl
for fault tolerant purpose due to tremendous s®rag Fig. 1. Continual migration mechanism
overheads.

Kemari [10] achieves virtual machine  The major difference between live and continua
replication by event driven synchronizations. Uelik migration is that the virtual machine on the target
Remus, Kemari migrates disk images via networkhost is not guaranteed to be consistent duringea i
attached storage, which may result in anmijgration, while continual migration must ensuratth
inconsistency when failure happens. Kemari solveseyen an ongoing migration is interrupted by a failu
this problem by synchronizing virtual machine’s on the source, there must be a valid and consistent
memory state every time before disk operations aretate on the backup system to recover from. This

issued. However,_ when running I/O intensive prings three major challenges to our work:
workloads, Kemari suffers a severe performance

penalty due to high frequency synchronizations.

Machine learning has been applied to 37 Migration Continuity
problem determination for complex systems in
avionics and energy production and generation. For  Although live migration provides minor machine
computer systems machine learning has been appliegdowntime, its overall migration time is significafib
primarily in the domains of security and performanc achieve fast and frequent checkpoints, continual
management. Service management products that aighigration must reduce overall migration time to a
virtualization (used to monitor virtual machinest-ou matter of tens of milliseconds. Besides, migration
of-band) with machine learning (used to analyze theprocedures should be changed so that ongoing

monitoring results). The importance _of virtu_alizmi migrations will not corrupt previous migrated
as a framework for software rejuvenation was consistent internal states on the backup host.

explored by Silva et al. [6].

Time

3.2. External Sate Consistency

3. Continual Migration Mechanism Continual migration participants share disk

_ _ ~ image via network attached storage, thus the
The basic concept of continual migration is consistency of the image file must be guaranteed

to continually and transparently migrates virtual even if cached disk data fails to flush to disk as
machine’s states to the backup host until faillge i fajlure happens.

detected. For most virtual machines, two parts of

states are required to migrate: the internal sta® 33 Coherent Consistency

as memory, registers and/or internal device buffers

and external states such as attached hard dislesnag When applications are rolled back to the last
In a live migration, internal states are propagated  mjgrated state, the corresponding disk image may
migration data stream transferred through network,nave been changed, which will result an
while external states are shared in network atchejncompatibility between memory and disk states on
storage. With such configuration, virtual machineshe phackup host. Continual migration must ensure
are able to migrate between hosts within localthat whenever a failure happens, the backup hast ca

network rapidly and agilely, without needing to pre |oad a consistent virtual machine with compatible
copy large disk image files. Continual migration jnternal and external states.

adopts this configuration but extends the migration
protocol so that states can be transferred corbjnua 4

to backup hosts. Internal State Migration

In continual migration, internal states are
replicated via live migration data stream. Continua
migration extends live migration with following
modifications:



Scheduled migration. The major change in
continual migration is to periodically issue outgmpi
migrations. This is done by scheduling a migration \ -
immediately after previous migration is completed. e e Lirirss aston s i e
One of the most simple and straightforward strategi Start VM - START MIGRATION
is to issue migrations with static time intervals.

Lightweight migration. Compared to live
migration protocols, continual migration introdu@es !
lightweight migration strategy for reducing miguoati Stop VM TEE MR ATION (COMMIT!
itgrationg time.gFor the firstgﬁve migratiog ite?m, { FINALEZE MIGRATION (COMMIL1)
whole memory blocks are transferred the same way
as traditional migration protocols, while after the
migration is completed, continual migration
continues to track dirtied pages, as following live
migration iterations will only transfer dirtied peg

Buffered migration. Continual migration :
buffers migration data to preserve consistent ivaker ' .
states. On the source host, migration data is mdfe =~ - e s e T
until the current migration iteration is completead
then this piece of migration stream is transfened
the backup host together with the length andFig. 2. Three-phasecommits
checksum. Incoming migration streams on the
backup host are buffered and verified before mergin

into migrated states, so that incomplete migration We consider a time designated as T0, when
data will not affect the current consistent states. both the source and the destination holds a cemsist
virtual machine states. In the first phase, live
migration is issued to the backup host, when memory
5. Three-phase Commits and processor updates are copied to the backup host
and buffered for verification. The attached buftere
When failure happens, the internal states areblc.)Ck device_ is switched to async mode, in whicrh th
rolled back to last migrated states; however, thewnte operations are buffered without affecting the

external states in the network attached storagedsne f(t)itr?(i olfnli\tlzem?ert;\t/i(z) rr': c?)t?ggig asntc;rra]lgeé évg&ant_?ls
more discussing. By buffering write operations in 9 ’

memory, buffered block device ensures the1 message is posted th_rough the event channel, to
consistency inside the disk image itself; howette, which the backup host will response to complete the

time to flush memory buffer to external image files first phase. After receiving the first COMMIT

crucial. When failure happens, internal states are ©SPONsE, the source switches the disk to sync mode

rolled back to the last migration state, while to flush buffer back to disks. This is considersdtze

states in the network attached storage won't, WhichSecond p_hase.t Ig tthteh l?)St kphaﬁe,ta COM';:LL tﬁ
may result in an incompatibility between memory message IS posted 10 the backup host, upon w

and disk states on the recovered virtual machinegggtap hv?ritjglllmn;irr%ﬁebug%rtid tlr?;ersn:lljrit:tiﬁ? the
Continual migration introduces a Three-phase P '

commits mechanism for this kind of coherent destination now enter a new consistent state

. L designated as T1.
consistency problem, as shown in Figure 2. Three-phase commits ensures that at any

time, the backup host can find a consistent virtual
machine state to recover from failure. For failures
between TO and commit 2, both the internal states
and external states are untouched, thus backumVirt
machine can be easily recovered to TO state. For
failures between commit 2 and commit 3, external
states are updated to newer version, while complete
internal state updates have already been trandftare
the backup host, with which the internal statestman
updated to match the external states. Failures afte
commit 3 won't affect backup consistency since both
internal and external states are updated to T1.

DISK_WRITE 1
_E l
I

I

o

1 co MITTE[HE
FLUSH_DISK (COMMIT 2)

i

....... -

COMMITTED 2 '
FINALIZE (C OJ'»_{[\-IIT 3)

Start VM |



6. Out-of-band Monitoring System xen,” in High Availability and Performance
Computing Workshop (HAPCWQ®&)006.
o ~[5] J. Huai, Q. Li, and C. Hu, “Research and design
~ We will implement a two-stage system using on hypervisor based virtual computing environment,”
machine learning. First, we generatec@ssifie  joymal of Softwarevol. 18, no. 8, pp. 2016—2026,
which is a piece of code that can identify faults. 5997

Second, the classifier is applied to data from live[g) | M. Silva, J. Alonso, P. Silva, J. Torresgan
virtual objects to determine their current state. | A Andrzejak. Using virtualization to improve
particular, we first collect data from a variety of goftware rejuvenation. IEEEE International

virtual machines under various loads. This data isgymposium on Network Computing and Applications
then fed to a machine learning process, which dstpu (|EEE-NCA) Cambridge, MA, USA, July 2007.

the classifier. The classifier is a decision roetthat  [7] p, Barham, B. Dragovic, K. Fraser, S. Hand, T.
can label each observation, and do so in a manngfarris, A. Ho, R. Neugebauer, I. Pratt, and A.
that is generally consistent with its training da@  \yjarfield, “Xen and the art of virtualization,” BOSP

the second stage, the system is running and th&y3: proceedings of the nineteenth ACM symposium
observations are collected as before. But this timeon Operating systems principledlew York, NY,

each observation is fed through the classifier and ysa: AcM, 2003, pp. 164-177.

label is predicted. If the label matches an acté®a [g] p, Ta-Shma, G. Laden, M. Ben-Yehuda, and M.

condition ( such as an imminent system failureg, th Factor,

system can be configured to take the appropriate\jrtyal machine time travel using continuous data

action. This process corresponds to a discipline Ofprotection and checkpointing3IGOPS Oper. Syst.

machine learning known as “supervised learning”. Rev, vol. 42, no. 1, pp. 127-134, 2008.

The supervision comes in the form of the labels tha [9] T. C. Bressoud and F. B. Schneider, “Hypervisor

are attached to the initial observations. In owwtem, based fault tolerance,” iIBOSP ’'95: Proceedings of

there will be two possible labels: normal and fault the fifteenth ACM symposium on Operating systems

principles New York, NY, USA: ACM, 1995, pp. 1-

11.

[10] Y. Tamura, K. Sato, S. Kihara, and S. Moriali,

“Kemari: virtual machine synchronization for fault
We have described the design of our tolerance,” iNUSENIX 08 Poster SessipBan Jose,

hypervisor based fault tolerant systems via coafinu CA, USA, 2008.

migration mechanism. It can reduce machine

downtime, while maintaining tolerable performance

tradeoffs. Additionally, we intend to implement the

out-of-band monitoring system for detecting failure

in virtual machines using virtualization and macehin

learning algorithm. This monitoring system can

accurately identify faults in the guest OS, will doar

future work.

7. Conclusion

References

[1] A. Agbaria and R. Friedman, “Virtual-machine-
based heterogeneous checkpointin§gftw. Pract.
Exper, vol. 32, no. 12, pp. 1175-1192, 2002.
[2]Brendan Cully, Geoffrey Lefebvre, Dutch Meyer,
Mike Feeley, Norm Hutchinson, and Andrew
Warfield

Remus: High Availability via Asynchronous Virtual
Machine Replication.

[3] C. Clark, K. Fraser, S. Hand, J. G. Hansen]UE.

C. Limpach, 1. Pratt, and A. Warfield, “Live
migration of virtual machines,” inNSDI'05:
Proceedings of the 2nd conference on Symposium on
Networked Systems Design & Implementation
Berkeley, CA, USA: USENIX Association,

2005, pp. 273-286.

[4] G. Vallee, T. Naughton, H. Ong, and S. L. Scott
“Checkpoint/restart of virtual machines based on



