

Local Disaster Recovery Using Virtualization Technology

Aye Myat Myat Paing
University of Computer Studies, Yangon

paing.ayemyat@gmail.com

Abstract

Business applications running on IT
infrastructure necessitate high levels of availability in
order to minimize the amount of downtime
experienced during any planned and unplanned
outages. As a result, disaster recovery has gained
great significance in IT. Exploiting virtualization and
ability to automatically reinstall a host, where the
action on a virtual machine is performed only when a
disaster occurs. Virtualization affords significant cost
and performance advantages over more traditional
disaster recovery options such as tape backup or
imaging. Our approach is to design and implement a
continual migration strategy for virtual machines to
achieve automatic failure recovery. By continually
and transparently propagating virtual machine’s state
to a backup host via live migration techniques, trivial
applications encapsulated in the virtual machine can
be recovered from hardware failures with minimal
downtime while no modifications are required.
Moreover, our framework intends to monitor virtual
machines for problems such as CPU utilization, I/O
activity, and memory utilization. This raises a
difficult problem, since it is quite difficult to
discriminate based on these measures between a
virtual object that is performing properly, and one
that is quite ill. We apply the out-of-band monitoring
using virtualization and machine learning can
accurately identify faults in the guest OS, while
avoiding the many pitfalls associated with in-band
monitoring.

Keywords: virtualization, availability,
 fault-tolerance, machine learning

1. Introduction

 Virtualization has been widely adopted by
data centers for transparent load balancing,
application mobility, server consolidation and secures
computing [1]. With one physical machine hosting
many virtual machines, a single node failure may
result in more severe disruption to hosted services,
which brings great challenge for automatic failure
recovery in virtualized computing environments. One
of the most general solutions for failure recovery is to
replicate the states of the protected virtual machine to
a backup host, with which the virtual machine may
be recovered from host failures. Although virtual
machine replication can be done in various ways, its

consistency and efficiency are not guaranteed. Most
virtual machines maintain memory and external
storage states in separate ways, which may result in
an inconsistency when replicated to the backup host.
In the mean time, fast and transparent failure
recovery requires the backup to be synchronized with
the primary virtual machine; however, synchronizing
on every change brings too much performance
tradeoffs [9].
 In this paper, we present a continual
migration mechanism for virtual machine based fault
tolerant systems by continually and transparently
propagating virtual machine’s states to a backup host
via live migration [3] techniques. While other
migration based high available systems [9] maintains
a secondary disk image file on the backup host,
continual migration propagates disk states via
network attached storage, which is more common in
a data center configuration and provides better agility
in both configuration and deployment. Some research
work achieves failure recovery by taking and restart
from checkpoints [7], [4], [8]. Continual migration
aims to provide transparent fault tolerance for
commodity applications in data centers or virtual
computing environments [5].In addition, our
framework make use of out-of-band monitoring
system using machine learning and virtualization.
Traditional approaches use in-band monitoring
agents. However in-band agents suffer from several
drawbacks: they need to be written or customized for
every workload (operating system and possibly also
application), they comprise potential security
liabilities, and are themselves affected by adverse
conditions in the monitored systems. Therefore, this
paper describes one approach to out-of-band
monitoring that performs this discrimination based on
statistical analysis, as implemented using machine
learning.

2. Related Work

 Remus provides an extremely high degree
of fault tolerance, to the point that a running system
can transparently continue execution on an alternate
physical host in the face of failure with only seconds
of downtime, while completely preserving host state
such as active network connections. This system
encapsulates protected software in a virtual machine,
asynchronously propagates changed state to a backup
host at frequencies as high as forty times a second,
and uses speculative execution to concurrently run

the active VM slightly ahead of the replicated system
state [2].
 Ta-Shma [8] uses a continuous data
protection (CDP) enabled file system to preserve
virtual machine disk image files. In a CDP enabled
file system, every write operation is logged and
revertible, which enables the virtual machine to move
to any historical states for debugging, intrusion
detection or fault tolerance. Though historical data is
valuable for system analysis, it is not quite suitable
for fault tolerant purpose due to tremendous storage
overheads.

Kemari [10] achieves virtual machine
replication by event driven synchronizations. Unlike
Remus, Kemari migrates disk images via network
attached storage, which may result in an
inconsistency when failure happens. Kemari solves
this problem by synchronizing virtual machine’s
memory state every time before disk operations are
issued. However, when running I/O intensive
workloads, Kemari suffers a severe performance
penalty due to high frequency synchronizations.
 Machine learning has been applied to
problem determination for complex systems in
avionics and energy production and generation. For
computer systems machine learning has been applied
primarily in the domains of security and performance
management. Service management products that aid
virtualization (used to monitor virtual machines out-
of-band) with machine learning (used to analyze the
monitoring results). The importance of virtualization
as a framework for software rejuvenation was
explored by Silva et al. [6].

3. Continual Migration Mechanism

The basic concept of continual migration is
to continually and transparently migrates virtual
machine’s states to the backup host until failure is
detected. For most virtual machines, two parts of
states are required to migrate: the internal state such
as memory, registers and/or internal device buffers,
and external states such as attached hard disk images.
In a live migration, internal states are propagated via
migration data stream transferred through network,
while external states are shared in network attached
storage. With such configuration, virtual machines
are able to migrate between hosts within local
network rapidly and agilely, without needing to pre-
copy large disk image files. Continual migration
adopts this configuration but extends the migration
protocol so that states can be transferred continually
to backup hosts.

Fig. 1. Continual migration mechanism

 The major difference between live and continual
migration is that the virtual machine on the target
host is not guaranteed to be consistent during a live
migration, while continual migration must ensure that
even an ongoing migration is interrupted by a failure
on the source, there must be a valid and consistent
state on the backup system to recover from. This
brings three major challenges to our work:

3.1. Migration Continuity

Although live migration provides minor machine
downtime, its overall migration time is significant. To
achieve fast and frequent checkpoints, continual
migration must reduce overall migration time to a
matter of tens of milliseconds. Besides, migration
procedures should be changed so that ongoing
migrations will not corrupt previous migrated
consistent internal states on the backup host.

3.2. External State Consistency

Continual migration participants share disk
image via network attached storage, thus the
consistency of the image file must be guaranteed
even if cached disk data fails to flush to disk as
failure happens.

3.3. Coherent Consistency

When applications are rolled back to the last
migrated state, the corresponding disk image may
have been changed, which will result an
incompatibility between memory and disk states on
the backup host. Continual migration must ensure
that whenever a failure happens, the backup host can
load a consistent virtual machine with compatible
internal and external states.

4. Internal State Migration

In continual migration, internal states are
replicated via live migration data stream. Continual
migration extends live migration with following
modifications:

Scheduled migration. The major change in
continual migration is to periodically issue outgoing
migrations. This is done by scheduling a migration
immediately after previous migration is completed.
One of the most simple and straightforward strategies
is to issue migrations with static time intervals.

Lightweight migration. Compared to live
migration protocols, continual migration introduces a
lightweight migration strategy for reducing migration
iteration time. For the first live migration iteration,
whole memory blocks are transferred the same way
as traditional migration protocols, while after the
migration is completed, continual migration
continues to track dirtied pages, as following live
migration iterations will only transfer dirtied pages.

Buffered migration. Continual migration
buffers migration data to preserve consistent internal
states. On the source host, migration data is buffered
until the current migration iteration is completed, and
then this piece of migration stream is transferred to
the backup host together with the length and
checksum. Incoming migration streams on the
backup host are buffered and verified before merging
into migrated states, so that incomplete migration
data will not affect the current consistent states.

5. Three-phase Commits

 When failure happens, the internal states are
rolled back to last migrated states; however, the
external states in the network attached storages needs
more discussing. By buffering write operations in
memory, buffered block device ensures the
consistency inside the disk image itself; however, the
time to flush memory buffer to external image files is
crucial. When failure happens, internal states are
rolled back to the last migration state, while external
states in the network attached storage won’t, which
may result in an incompatibility between memory
and disk states on the recovered virtual machine.
Continual migration introduces a Three-phase
commits mechanism for this kind of coherent
consistency problem, as shown in Figure 2.

Fig. 2. Three-phase commits

We consider a time designated as T0, when
both the source and the destination holds a consistent
virtual machine states. In the first phase, live
migration is issued to the backup host, when memory
and processor updates are copied to the backup host
and buffered for verification. The attached buffered
block device is switched to async mode, in which the
write operations are buffered without affecting the
states in the network attached storage. When this
round of live migration comes to an end, a COMMIT
1 message is posted through the event channel, to
which the backup host will response to complete the
first phase. After receiving the first COMMIT
response, the source switches the disk to sync mode
to flush buffer back to disks. This is considered as the
second phase. In the last phase, a COMMIT 3
message is posted to the backup host, upon which the
backup host will merge buffered internal states to the
backup virtual machine. Both the source and the
destination now enter a new consistent state
designated as T1.

Three-phase commits ensures that at any
time, the backup host can find a consistent virtual
machine state to recover from failure. For failures
between T0 and commit 2, both the internal states
and external states are untouched, thus backup virtual
machine can be easily recovered to T0 state. For
failures between commit 2 and commit 3, external
states are updated to newer version, while complete
internal state updates have already been transferred to
the backup host, with which the internal states can be
updated to match the external states. Failures after
commit 3 won’t affect backup consistency since both
internal and external states are updated to T1.

6. Out-of-band Monitoring System

 We will implement a two-stage system using
machine learning. First, we generate a classifier,
which is a piece of code that can identify faults.
Second, the classifier is applied to data from live
virtual objects to determine their current state. In
particular, we first collect data from a variety of
virtual machines under various loads. This data is
then fed to a machine learning process, which outputs
the classifier. The classifier is a decision routine that
can label each observation, and do so in a manner
that is generally consistent with its training data. In
the second stage, the system is running and the
observations are collected as before. But this time,
each observation is fed through the classifier and a
label is predicted. If the label matches an actionable
condition (such as an imminent system failure), the
system can be configured to take the appropriate
action. This process corresponds to a discipline of
machine learning known as “supervised learning”.
The supervision comes in the form of the labels that
are attached to the initial observations. In our system,
there will be two possible labels: normal and faulty.

7. Conclusion

We have described the design of our

hypervisor based fault tolerant systems via continual
migration mechanism. It can reduce machine
downtime, while maintaining tolerable performance
tradeoffs. Additionally, we intend to implement the
out-of-band monitoring system for detecting failure
in virtual machines using virtualization and machine
learning algorithm. This monitoring system can
accurately identify faults in the guest OS, will be our
future work.

References

[1] A. Agbaria and R. Friedman, “Virtual-machine-
based heterogeneous checkpointing,” Softw. Pract.
Exper., vol. 32, no. 12, pp. 1175–1192, 2002.
[2]Brendan Cully, Geoffrey Lefebvre, Dutch Meyer,
Mike Feeley, Norm Hutchinson, and Andrew
Warfield
Remus: High Availability via Asynchronous Virtual
Machine Replication.
[3] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield, “Live
migration of virtual machines,” in NSDI’05:
Proceedings of the 2nd conference on Symposium on
Networked Systems Design & Implementation.
Berkeley, CA, USA: USENIX Association,
2005, pp. 273–286.
[4] G. Vallee, T. Naughton, H. Ong, and S. L. Scott,
“Checkpoint/restart of virtual machines based on

xen,” in High Availability and Performance
Computing Workshop (HAPCW06), 2006.
[5] J. Huai, Q. Li, and C. Hu, “Research and design
on hypervisor based virtual computing environment,”
Journal of Software, vol. 18, no. 8, pp. 2016–2026,
2007.
[6] L. M. Silva, J. Alonso, P. Silva, J. Torres, and
A. Andrzejak. Using virtualization to improve
software rejuvenation. In IEEE International
Symposium on Network Computing and Applications
(IEEE-NCA), Cambridge, MA, USA, July 2007.
[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T.
Harris, A. Ho, R. Neugebauer, I. Pratt, and A.
Warfield, “Xen and the art of virtualization,” in SOSP
’03: Proceedings of the nineteenth ACM symposium
on Operating systems principles. New York, NY,
USA: ACM, 2003, pp. 164–177.
[8] P. Ta-Shma, G. Laden, M. Ben-Yehuda, and M.
Factor,
“Virtual machine time travel using continuous data
protection and checkpointing,” SIGOPS Oper. Syst.
Rev., vol. 42, no. 1, pp. 127–134, 2008.
[9] T. C. Bressoud and F. B. Schneider, “Hypervisor-
based fault tolerance,” in SOSP ’95: Proceedings of
the fifteenth ACM symposium on Operating systems
principles. New York, NY, USA: ACM, 1995, pp. 1–
11.
[10] Y. Tamura, K. Sato, S. Kihara, and S. Moriai,
“Kemari: virtual machine synchronization for fault
tolerance,” in USENIX ’08 Poster Session, San Jose,
CA, USA, 2008.

