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Abstract 
 

Business applications running on IT 
infrastructure necessitate high levels of availability in 
order to minimize the amount of downtime 
experienced during any planned and unplanned 
outages. As a result, disaster recovery has gained 
great significance in IT. Exploiting virtualization and 
ability to automatically reinstall a host, where the 
action on a virtual machine is performed only when a 
disaster occurs. Virtualization affords significant cost 
and performance advantages over more traditional 
disaster recovery options such as tape backup or 
imaging. Our approach is to design and implement a 
continual migration strategy for virtual machines to 
achieve automatic failure recovery. By continually 
and transparently propagating virtual machine’s state 
to a backup host via live migration techniques, trivial 
applications encapsulated in the virtual machine can 
be recovered from hardware failures with minimal 
downtime while no modifications are required. 
Moreover, our framework intends to monitor virtual 
machines for problems such as CPU utilization, I/O 
activity, and memory utilization. This raises a 
difficult problem, since it is quite difficult to 
discriminate based on these measures between a 
virtual object that is performing properly, and one 
that is quite ill. We apply the out-of-band monitoring 
using virtualization and machine learning can 
accurately identify faults in the guest OS, while 
avoiding the many pitfalls associated with in-band 
monitoring. 
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1. Introduction 
 
 Virtualization has been widely adopted by 
data centers for transparent load balancing, 
application mobility, server consolidation and secures 
computing [1]. With one physical machine hosting 
many virtual machines, a single node failure may 
result in more severe disruption to hosted services, 
which brings great challenge for automatic failure 
recovery in virtualized computing environments. One 
of the most general solutions for failure recovery is to 
replicate the states of the protected virtual machine to 
a backup host, with which the virtual machine may 
be recovered from host failures. Although virtual 
machine replication can be done in various ways, its 

consistency and efficiency are not guaranteed. Most 
virtual machines maintain memory and external 
storage states in separate ways, which may result in 
an inconsistency when replicated to the backup host. 
In the mean time, fast and transparent failure 
recovery requires the backup to be synchronized with 
the primary virtual machine; however, synchronizing 
on every change brings too much performance 
tradeoffs [9]. 
 In this paper, we present a continual 
migration mechanism for virtual machine based fault 
tolerant systems by continually and transparently 
propagating virtual machine’s states to a backup host 
via live migration [3] techniques. While other 
migration based high available systems [9] maintains 
a secondary disk image file on the backup host, 
continual migration propagates disk states via 
network attached storage, which is more common in 
a data center configuration and provides better agility 
in both configuration and deployment. Some research 
work achieves failure recovery by taking and restart 
from checkpoints [7], [4], [8]. Continual migration 
aims to provide transparent fault tolerance for 
commodity applications in data centers or virtual 
computing environments [5].In addition, our 
framework make use of out-of-band monitoring  
system using machine learning and virtualization. 
Traditional approaches use in-band monitoring 
agents. However in-band agents suffer from several 
drawbacks: they need to be written or customized for 
every workload (operating system and possibly also 
application), they comprise potential security 
liabilities, and are themselves affected by adverse 
conditions in the monitored systems. Therefore, this 
paper describes one approach to out-of-band 
monitoring that performs this discrimination based on 
statistical analysis, as implemented using machine 
learning. 
  
2. Related Work 
 

 Remus provides an extremely high degree 
of fault tolerance, to the point that a running system 
can transparently continue execution on an alternate 
physical host in the face of failure with only seconds 
of downtime, while completely preserving host state 
such as active network connections. This system 
encapsulates protected software in a virtual machine, 
asynchronously propagates changed state to a backup 
host at frequencies as high as forty times a second, 
and uses speculative execution to concurrently run 



  

the active VM slightly ahead of the replicated system 
state [2]. 
 Ta-Shma [8] uses a continuous data 
protection (CDP) enabled file system to preserve 
virtual machine disk image files. In a CDP enabled 
file system, every write operation is logged and 
revertible, which enables the virtual machine to move 
to any historical states for debugging, intrusion 
detection or fault tolerance. Though historical data is 
valuable  for system analysis, it is not quite suitable 
for fault tolerant purpose due to tremendous storage 
overheads. 

Kemari [10] achieves virtual machine 
replication by event driven synchronizations. Unlike 
Remus, Kemari migrates disk images via network 
attached storage, which may result in an 
inconsistency when failure happens. Kemari solves 
this problem by synchronizing virtual machine’s 
memory state every time before disk operations are 
issued. However, when running I/O intensive 
workloads, Kemari suffers a severe performance 
penalty due to high frequency synchronizations. 
 Machine learning has been applied to 
problem determination for complex systems in 
avionics and energy production and generation. For 
computer systems machine learning has been applied 
primarily in the domains of security and performance 
management. Service management products that aid 
virtualization (used to monitor virtual machines out-
of-band) with machine learning (used to analyze the 
monitoring results). The importance of virtualization 
as a framework for software rejuvenation was 
explored by Silva et al. [6]. 
 
 
3. Continual Migration Mechanism 
 

The basic concept of continual migration is 
to continually and transparently migrates virtual 
machine’s states to the backup host until failure is 
detected. For most virtual machines, two parts of 
states are required to migrate: the internal state such 
as memory, registers and/or internal device buffers, 
and external states such as attached hard disk images. 
In a live migration, internal states are propagated via 
migration data stream transferred through network, 
while external states are shared in network attached 
storage. With such configuration, virtual machines 
are able to migrate between hosts within local 
network rapidly and agilely, without needing to pre-
copy large disk image files. Continual migration 
adopts this configuration but extends the migration 
protocol so that states can be transferred continually 
to backup hosts. 

 
Fig. 1. Continual migration mechanism 
 
     The major difference between live and continual 
migration is that the virtual machine on the target 
host is not guaranteed to be consistent during a live 
migration, while continual migration must ensure that 
even an ongoing migration is interrupted by a failure 
on the source, there must be a valid and consistent 
state on the backup system to recover from. This 
brings three major challenges to our work: 
 
 
3.1.  Migration Continuity 
 

Although live migration provides minor machine 
downtime, its overall migration time is significant. To 
achieve fast and frequent checkpoints, continual 
migration must reduce overall migration time to a 
matter of tens of milliseconds. Besides, migration 
procedures should be changed so that ongoing 
migrations will not corrupt previous migrated 
consistent internal states on the backup host. 
 
3.2.  External State Consistency 
 

Continual migration participants share disk 
image via network attached storage, thus the 
consistency of the image file must be guaranteed 
even if cached disk data fails to flush to disk as 
failure happens. 
 
3.3.  Coherent Consistency  
 

When applications are rolled back to the last 
migrated state, the corresponding disk image may 
have been changed, which will result an 
incompatibility between memory and disk states on 
the backup host. Continual migration must ensure 
that whenever a failure happens, the backup host can 
load a consistent virtual machine with compatible 
internal and external states. 
 
4. Internal State Migration 
  

In continual migration, internal states are 
replicated via live migration data stream. Continual 
migration extends live migration with following 
modifications: 



  

Scheduled migration. The major change in 
continual migration is to periodically issue outgoing 
migrations. This is done by scheduling a migration 
immediately after previous migration is completed. 
One of the most simple and straightforward strategies 
is to issue migrations with static time intervals. 

Lightweight migration. Compared to live 
migration protocols, continual migration introduces a 
lightweight migration strategy for reducing migration 
iteration time. For the first live migration iteration, 
whole memory blocks are transferred the same way 
as traditional migration protocols, while after the 
migration is completed, continual migration 
continues to track dirtied pages, as following live 
migration iterations will only transfer dirtied pages. 

Buffered migration. Continual migration 
buffers migration data to preserve consistent internal 
states. On the source host, migration data is buffered 
until the current migration iteration is completed, and 
then this piece of migration stream is transferred to 
the backup host together with the length and 
checksum. Incoming migration streams on the 
backup host are buffered and verified before merging 
into migrated states, so that incomplete migration 
data will not affect the current consistent states. 
 

5.   Three-phase Commits 

 
 When failure happens, the internal states are 
rolled back to last migrated states; however, the 
external states in the network attached storages needs 
more discussing. By buffering write operations in 
memory, buffered block device ensures the 
consistency inside the disk image itself; however, the 
time to flush memory buffer to external image files is 
crucial. When failure happens, internal states are 
rolled back to the last migration state, while external 
states in the network attached storage won’t, which 
may result in an incompatibility between memory 
and disk states on the recovered virtual machine. 
Continual migration introduces a Three-phase 
commits mechanism for this kind of coherent 
consistency problem, as shown in Figure 2. 

 
 
Fig. 2.  Three-phase commits 
 
 

We consider a time designated as T0, when 
both the source and the destination holds a consistent 
virtual machine states. In the first phase, live 
migration is issued to the backup host, when memory 
and processor updates are copied to the backup host 
and buffered for verification. The attached buffered 
block device is switched to async mode, in which the 
write operations are buffered without affecting the 
states in the network attached storage. When this 
round of live migration comes to an end, a COMMIT 
1 message is posted through the event channel, to 
which the backup host will response to complete the 
first phase. After receiving the first COMMIT 
response, the source switches the disk to sync mode 
to flush buffer back to disks. This is considered as the 
second phase. In the last phase, a COMMIT 3 
message is posted to the backup host, upon which the 
backup host will merge buffered internal states to the 
backup virtual machine. Both the source and the 
destination now enter a new consistent state 
designated as T1.  

Three-phase commits ensures that at any 
time, the backup host can find a consistent virtual 
machine state to recover from failure. For failures 
between T0 and commit 2, both the internal states 
and external states are untouched, thus backup virtual 
machine can be easily recovered to T0 state. For 
failures between commit 2 and commit 3, external 
states are updated to newer version, while complete 
internal state updates have already been transferred to 
the backup host, with which the internal states can be 
updated to match the external states. Failures after 
commit 3 won’t affect backup consistency since both 
internal and external states are updated to T1. 
 
 
 



  

6. Out-of-band Monitoring System 

 
 We will implement a two-stage system using 
machine learning. First, we generate a classifier, 
which is a piece of code that can identify faults. 
Second, the classifier is applied to data from live 
virtual objects to determine their current state. In 
particular, we first collect data from a variety of 
virtual machines under various loads. This data is 
then fed to a machine learning process, which outputs 
the classifier. The classifier is a decision routine that 
can label each observation, and do so in a manner 
that is generally consistent with its training data. In 
the second stage, the system is running and the 
observations are collected as before. But this time, 
each observation is fed through the classifier and a 
label is predicted. If the label matches an actionable 
condition ( such as an imminent system failure), the 
system can be configured to take the appropriate 
action. This process corresponds to a discipline of 
machine learning known as “supervised learning”. 
The supervision comes in the form of the labels that 
are attached to the initial observations. In our system, 
there will be two possible labels: normal and faulty. 
 

7. Conclusion  

 
We have described the design of our 

hypervisor based fault tolerant systems via continual 
migration mechanism. It can reduce machine 
downtime, while maintaining tolerable performance 
tradeoffs. Additionally, we intend to implement the 
out-of-band monitoring system for detecting failure 
in virtual machines using virtualization and machine 
learning algorithm. This monitoring system can 
accurately identify faults in the guest OS, will be our 
future work. 
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